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A B S T R A C T   

New developments to computer-aided design (CAD) software transform a once solitary modelling task into a 
collaborative one. The emerging multi-user CAD (MUCAD) systems allow virtual, real-time collaboration, with 
the potential to expand the learning outcomes and teaching methods of CAD. This paper proposes a MUCAD 
collaborative learning framework (MUCAD-CLF) to interpret backend analytic data from commercially available 
MUCAD software. The framework builds on several existing metrics from the literature and introduces newly 
developed methods to classify CAD actions collected from users’ analytic data. The framework contains two 
different classification approaches of user actions, categorizing actions by action type (e.g., creating, revising, 
viewing) and by design space (e.g., constructive, organizing), for comparative analysis. Next, the analytical 
framework is applied via a collaborative design challenge, corresponding to over 20,000 actions collected from 
31 participants. Illustrative analyses utilizing the MUCAD-CLF are presented to demonstrate the resulting insight. 
Differences in CAD behaviour, indicating differences in learning, are observed between teams made up entirely 
of novices, entirely of experienced users, or a mix. In pairs of experts and novices, we see both a perceived high- 
satisfaction apprenticeship experience for the novices and preliminary evidence of an increase in expert design 
behaviours for the novices. The proposed framework is critical for MUCAD systems to make the most of the 
educational possibility of combining technical skill-building with team collaboration. Preliminary evidence 
collected in a fully-virtual design learning activity, and analyzed using the proposed MUCAD-CLF, shows that 
novice students gain advanced CAD design knowledge when collaborating with experienced teammates. With the 
user data captured by modern MUCAD software and the MUCAD-CLF presented herein, instructors and re
searchers can more efficiently assess and visualize students’ performance over the design learning process.   

1. Introduction 

Since computer-aided design (CAD) was first developed in the 1950s, 
its capabilities have been continuously extended and diversified in 
different application design domains, such as mechanical, electronic, 
architecture, and so forth [1]. CAD has been used as an essential tool in 
engineering design to support detailed design for product development. 
Being an indispensable design tool in the industry, CAD has long been 
part of the university engineering curriculum [2]. While three- 
dimensional geometric and structural modelling remains the core of 
CAD programs, recent CAD technological advancements focus on “vir
tualization” and “collaboration” [1]. As virtual collaboration has long 
been an essential topic of research [3], and modelling is an indispens
able part of engineering education [4], we are particularly interested in 

exploring the potential of improving modern pedagogy on CAD 
modelling with the collaborative nature of cutting-edge multi-user CAD 
(MUCAD). 

With the commercialization of CAD software in the 1980s, industrial 
CAD systems, or what we refer to as Traditional CAD, have employed 
solid and parametric modelling techniques. Subsequently, developments 
continuously improved the virtual representations of curves and sur
faces in Traditional CAD [5]. Notably, Traditional CAD operates in 
standalone computers, which makes file sharing between designers 
time-consuming and complicated. Driven by the growing complexity of 
modern product design and the improvements in geometric computing 
algorithms, collaborative CAD is becoming the state-of-the-art evolution 
in CAD design [6], which we refer to as Modern CAD in this paper. While 
preserving traditional parametric modelling techniques, Modern CAD 
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migrates locally-installed Traditional CAD systems to the cloud. In 
contrast to Traditional CAD, advancements in cloud computing help 
Modern CAD users achieve more efficient file access and sharing. 

With the standalone nature of Traditional CAD installations, all 
Traditional CAD software is effectively single-user CAD. However, 
cloud-based Modern CAD opens opportunities for multi-user CAD 
(MUCAD). In a MUCAD environment, geographically distributed engi
neers can virtually contribute to one CAD model simultaneously, where 
edits are instantly updated for every user viewing the design. Designing 
in a MUCAD environment can be described as an analogy to simulta
neous text-editing in a Google Docs file, and the collaborative design 
principles in MUCAD are also deemed similar to the ones in Minecraft 
[7]. In order to provide real-time synchronization, MUCAD must be 
supported by a sophisticated collaborative software architecture system, 
such as conflict-free replicated data type [8]. Importantly, the MUCAD 
platform is expected to enhance virtual collaboration and stimulate 
more innovative ideas during the design process [9,10]. 

From Traditional CAD to Modern MUCAD, research with data ana
lytics and multi-party collaboration has always been part of the efforts of 
improving design quality and efficiency with CAD. In the architecture, 
engineering, and construction (AEC) industry for example, there is an 
increasing demand for higher computing power, such as cloud 
computing and distributed data management, to achieve effective 
collaboration [11]. Specifically, Gao et al. examined the interoperability 
between CAD-based building information modelling (BIM) and opera
tion and maintenance (O&M), and they found that this integration re
mains a challenge due to inefficiencies in information exchange [12]. 
With traditionally geometric-centered mechanical CAD on the other 
hand, new developments of semantic and textual representation of 
features aim to enhance the cognitive understanding of the designed 
product [13,14]. To further improve the design efficiency, common 
design structures can be identified from large CAD databases, such that 
skillfully reusing these structures can reduce redundant modelling time 
[15]. Data analytics have played an important role in the development 
history of CAD. While behaviours in CAD are traditionally hard to 
quantify, data mining of user behavioural analytics has the potential to 
improve modern research; such success has been reached in other fields, 
such as via the construction of recommender systems in learning social 
information [16]. However, there currently exists little work to explore 
the application of data analytics in CAD education. 

Passow and Passow’s systematic review of the literature revealed 
that the most critical competency to be learned in undergraduate engi
neering programs is “coordinating multiple competencies to accomplish 
a goal,” and they further assert that “engineers’ technical work is 
inseparably intertwined with team-player collaboration” [17]. In other 
words, effective teamwork skills are essential for students to develop in 
the engineering design process [18]. MUCAD presents the opportunity 
for teamwork to be incorporated deeper in the engineering design pro
cess, into the step of detailed engineering design. From the literature, we 
expect that students will perform better when learning engineering 
concepts with collaborative interactions [19]. In brief, we expect the 
adoption of MUCAD for CAD teaching to effectively foster collaborative 
learning in modern engineering curriculums, especially since engineer
ing education is increasingly emphasizing teamwork and collaboration. 

The transformation from Traditional CAD to MUCAD, which includes 
real-time collaborative capabilities, is a relatively recent phenomenon. 
Therefore, little research has been done to examine if MUCAD indeed 
provides a more efficient platform for engineers to work together. Pre
vious studies show that engineers often need to seek help from other 
professionals when learning new feature-rich software in the industry 
[20], and computer mediated collaboration can often be more effective 
than face-to-face communication [21]. We are thus interested in 
examining how students would incorporate similar learning methods in 
a virtual design challenge setting while developing effective team
working skills. 

In this paper, we first examine the modern teaching of Traditional 

CAD and how CAD analytics has been studied in academia, in Section 2. 
In the next section, we propose a MUCAD collaborative learning 
framework (MUCAD-CLF) with a set of metrics based on backend user 
analytics from the CAD software to analyze MUCAD learning. The 
framework combines metrics adapted from the literature with novel 
methods of analysis. Moreover, the framework provides a systematic 
data mining approach to study CAD users’ backend behavioural ana
lytics. With data collected from a design challenge, we demonstrate the 
MUCAD-CLF and present our results in Section 4, illustrating the 
framework’s feasibility. Finally, we discuss promising potential for 
future application of the framework, motivating educators and re
searchers to build on this work with future research regarding CAD 
learning and team collaboration. 

2. Background 

As MUCAD is a relatively new innovation in CAD modelling, few 
researchers have focused their studies on team collaboration in the 
MUCAD environment. Those studies that do exist look at traditional 
product design outcomes and industry settings rather than learning 
outcomes and educational contexts. One study derives implications for 
MUCAD instructions from interviews with industry users [22], sug
gesting that there are features of MUCAD that require changes to the 
way CAD is taught in post-secondary education. The authors find that 
instruction should prepare students for the flexible modes of working 
that MUCAD affords, and that teamwork in the detailed design phase 
requires both standard workflows and a culture of psychological safety 
to take full advantage of the potential for collaboration. Phadnis et al. 
test the applicability of pair programming - a common approach to 
coding where two coders work together in real-time – to pair CAD, as 
facilitated by MUCAD [23]. The researchers suggest that the outcomes 
found previously in the pair programming literature, such as higher 
quality outputs and more satisfied collaborators, hold when pair CAD 
users are compared to individual users. Further exploring the compari
son of paired versus individual MUCAD designers, Zhou et al. find that 
paired designers experience a higher level of emotion during the design 
process than individual users, which may indicate a more engaging work 
experience [24]. Eves et al. conducted experiments to find that teams 
using MUCAD had a greater awareness of teammates’ activities and 
increased communication between team members [9]. Similarly, Stone 
et al. found the potential of MUCAD to accelerate the modelling time for 
time-constrained activities [10]. 

These studies primarily focus on communication and other qualita
tive observations of the teams’ design process using MUCAD; the po
tential of insights from the rich data sets available via the MUCAD’s 
backend user analytics has not yet been fully explored. Further, recent 
developments of built-in data collection features in a commercial CAD 
software open up new opportunities for more efficient academic 
research, whereas in the past, researchers had to build their own pro
grams to collect similar data [9,10,25–29]. In computer programming 
education however, Blikstein et al. have already demonstrated the po
tential of examining students’ process of programming using learning 
analytics [30]. With backend analytics that record all user actions 
available in a MUCAD software, we can now use quantitative data to 
examine user behaviours further and better understand collaboration. 
We do not compare Traditional and MUCAD in this paper because we 
did not collect data from Traditional CAD in this study; the methods and 
analysis included are specifically built for research in MUCAD. We do, 
however, anticipate an inevitable shift away from Traditional CAD to
wards MUCAD in the future, especially in educational settings like 
universities. 

2.1. Modern teaching of traditional CAD 

Researchers have put forward new theories or strategies to improve 
the learning experience of Traditional CAD. Besides teaching CAD as a 
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solid modelling tool, CAD has also been used as a platform to teach 
engineering design through modelling and simulation [29]. Huang et al. 
found that applying the cognitive apprenticeship teaching method - 
demonstrating the thinking process of a CAD design while teaching 
fundamental CAD features - helped students develop the ability to apply 
their knowledge and problem-solving skills more effectively [31]. 
Meanwhile, others argue that overemphasizing CAD modelling features 
may lead to detrimental neglect of the functional design considerations, 
resulting in poorly constructed CAD models [32]. The recent emergence 
of direct modelling methods, a method that allows greater modelling 
flexibility by simply pushing and pulling geometric entities, is found to 
be particularly important to remind designers the associativity between 
parts [33]. Given that students have different collaboration styles during 
CAD design, Ellis et al. attempted to characterize students in groups 
based on their approach to collaboration, implying tailored instructions 
should be given to students depending on their teamwork preference 
[34]. Similarly, Hamade developed a set of survey questions to under
stand the backgrounds, attitudes, and preferences of CAD learners prior 
to training sessions [35], such that it would be possible to anticipate 
which students might encounter more difficulties during their CAD 
learning experience and could therefore be pre-emptively given addi
tional support. In order to convey design quality requirements more 
efficiently, Company et al. attempted to develop embedded rubrics to 
guide CAD trainees, enforcing quality modelling [36]. While much can 
be learned from this Traditional CAD literature, a corresponding body of 
knowledge related to teaching and learning in MUCAD is lacking. This 
leaves the opportunities for research to examine if novel teaching and 
learning methods are required and beneficial in a MUCAD environment. 

2.2. CAD analytical frameworks 

As Vieira et al. summarized in a systematic literature review [37], 
although educators and researchers have been integrating educational 
data mining and learning analytics in education with various objectives, 
the affordances of this powerful integrative field have not yet been 
exploited. For education in Traditional CAD design specifically, re
searchers have been exploring applications of backend analytic data 
towards understanding students’ learning behaviours. With all actions 
made by individual students visualized along a time series, Xie et al. 
examined the efficacy of technical instructions and support given to 
students during their design process through observing variations in the 
numbers of actions along students’ CAD logs [26]. Further analysis was 
achieved with a more detailed classification of CAD actions in building- 
related and revision-related actions, modifying or deleting previously 
built structures. Then, researchers can statistically determine if a student 
has possessed a more reflective design process by having made a more 
significant proportion of revision-related actions, and iterative 
designing cycles can potentially be identified [28]. Similarly, Gopsill 
et al. further classified such analytic data in six command types for a 
typical CAD design process [38], which concluded with more detailed 
observations in the transition patterns between action types. With a 
CAD-based experimental platform developed specifically for research in 
learning analytics, Rahman et al. studied students’ design thinking by 
coding different design actions with the Function-Behaviour-Structure 
ontology [27]. Meanwhile, it was also shown that analysis of exit sur
veys, the actual final CAD models, and students’ self-reports were also 
valuable for research, supplementing the quantitative analysis of the 
learning analytics [26,28,29]. 

Building on this foundation of CAD analytic frameworks, commercial 
MUCAD software provides a mature commercial platform for analytic 
data collection, and more accessible and standardized analysis methods 
are now possible with data mining. In addition, analytics now give ac
cess to more behavioural data, providing us insight on collaboration, 
along with traditional data that record users’ constructions only. 

2.3. Gender difference 

Some previous research suggests that there could be a difference in 
spatial reasoning ability between genders [39], one of many contrib
uting factors leading to the under-representation of women in science 
and engineering. However, research has also shown that such ability 
differences result from societal exposure and opportunities for learning 
[39] and can be effectively minimized with spatial strategy instructions 
[40,41]. Previous work in the context of CAD has used gender as a lens 
for reporting differences. Xie et al. had found that male students tended 
to produce more complex designs that simply look “cool” but do not 
necessarily meet the design specifications; and female students tended to 
pay more attention to design specifications while spending more time on 
revising their designs [28]. When working in an engineering design 
team, Laeser et al. observed that gender composition does affect both the 
interactions between team members and the quality of the team’s final 
reports [42]. 

Further related to gender, we propose our MUCAD-CLF as an alter
native to popular self-assessment and peer-assessment of contribution 
scores for teamwork. The framework can deliver empirically-derived 
contribution scores that are not vulnerable to previously reported 
gender bias [43]. As gender differences can sometimes lead to important 
research questions and results, we have incorporated the exploration of 
gender-related research questions in our proposed framework. 

2.4. Study aim 

Our study aims to develop a collaborative learning framework for 
MUCAD which exploits user analytic data, the feasibility of which we 
next illustrate with data from 31 students who participated in a 
collaborative, virtual, design learning activity. 

3. The MUCAD collaborative learning framework 

The complete design process of a typical CAD model likely requires 
hundreds, or even thousands, of user actions (or clicks); the manual 
analysis of data of such scale is daunting. Further with our application in 
mind, large class sizes in schools and universities will certainly result in 
more collaboration and even larger datasets. Consequently, a more 
efficient approach to process these data is required. In the MUCAD-CLF, 
we combine several analysis methods and metrics adapted from the 
literature with new methods we developed. All analytic data were pro
cessed through self-built Python scripts, now shared open-source online 
[44]. The two classification methods presented in this section, as well as 
their potential applications illustrated in a case study in Section 4, make 
up the proposed Multi-User Computer-Aided Design Collaborative 
Learning Framework (MUCAD-CLF). An overview of the MUCAD-CLF is 
provided in Fig. 1. 

3.1. A MUCAD platform 

A first requirement of the MUCAD-CLF is a MUCAD platform. In this 
study, we use Onshape [45] as the MUCAD tool. Onshape was selected as 
the CAD platform in this paper because of its mature MUCAD environ
ment and its ability to collect and present backend analytics for efficient 
research analysis. Access to these analytics also brings insight on 
behavioural actions for quantitative research to better understand 
collaboration. Onshape is one of the very first commercially available 
cloud-based Modern MUCAD software programs in the market. It is 
accessible from any computer, and even smartphone, with connection to 
the internet. Users design in Onshape by collaboratively contributing to 
the same document, which contains and organizes Part Studios, As
semblies, and Drawings as tabs, similar to a web browser. While multiple 
Part Studios, Assemblies, and Drawings can be created and used within 
one document, a typical design will start with part designing in several 
separate Part Studios, and parts are then assembled in an Assembly. 
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Meanwhile, Drawings are used to produce technical engineering draw
ings for manufacturing but are not used and studied in this paper. When 
multiple users are working simultaneously in an Onshape document, 
they can make synchronous edits on the same part; they can work 
separately in different Part Studios and see progress in other Part Stu
dios; and they can even follow others’ view angle to see exactly what 
their teammate is viewing. 

In addition, the Enterprise version of Onshape automatically records 
all edits made by each user within a document as a chronological audit 
trail. These backend analytic data record constructions and modifica
tions to any features in the CAD document (e.g., creating a sketch, de
leting a part, etc.) and any behavioural actions (e.g., switching a tab), 
which are essentially every click that a user commits. These analytics are 
visible to all administrators of the Enterprise account. 

3.2. Design space classification 

In general, designs are mainly constructed in two design spaces: Part 
Studios and Assemblies. Users start designing individual parts and make 
detailed modifications to existing parts in a Part Studio. Then, they 
assemble parts from different Part Studios in an Assembly with various 
available mates, constraining the relative motions of individual parts. 
Within each design space, there are unique features available to the 
specific design space (e.g., Extrude in Part Studios and Fastened Mate in 
Assemblies). In Part Studios, a part is usually constructed by first 
creating a new 2D sketch, which is then transformed into a 3D solid 
through various 3D features. Whereas in an Assembly, users need to first 

insert parts from different Part Studios that they want to assemble, then 
they constrain relative motions of different parts using Mating features. 

Following the design architecture of the Part Studio and Assembly 
spaces, a method for classifying analytic actions was developed, as 
summarized in Table 1. This classification method first separates 
constructive actions that make visible modifications to the design from 
organizing actions that are more behavioural. Within the constructive 
action category, actions are further classified into their design space: 
Part Studio and Assembly. Sketching-related and 3D Features-related 
actions are deemed to be the two most distinguishable action types in 
Part Studios, hence forming two independent action groups in Part 
Studios. Similarly, Mating features-related and Visualizing-related ac
tions form the other two action groups under Assembly. Organizing 
actions are split into Browsing, the most common organizing action 
types, and all other organizing actions. 

3.3. Action type classification 

The second classification method was adapted from Gopsill et al. 
[38], where analytic actions are categorized into six command types for 
a typical design process: creating, editing, constraining, deleting, 
reversing, and viewing. However, constraining actions that define the 
sketched geometry with precise dimensions cannot be isolated from 
Onshape’s audit trails, as they are considered parts of editing actions to 
existing sketches or features. Therefore, the adapted version of this 
classification method in our framework contains five categories pro
posed by Gopsill’s paper and an “Other” category, containing all actions 

Fig. 1. An overview of the Multi-User CAD Collaborative Learning Framework and the additional data collected in this study as an illustration of feasibility.  

Table 1 
Design space classification.  

Design Space Constructive Actions Organizing Actions 

Part Studio Assembly 

Action Type Name Sketching 3D Features Mating Visualizing Browsing Other Organizing 

Summary of Sample 
Actions 

Add/modify a 
sketch 

Add/edit a Part Studio 
feature 

Add/delete a part from Part 
Studios 

Drag parts/ 
workspace 

Create/delete/ 
rename a tab 

Create/merge version/ 
branch 

Copy/paste a 
sketch 

* Delete a sketch/Part 
Studio feature 

Insert/edit/delete an 
Assembly feature 

Call animate 
actions 

Open/close a tab ** Undo/redo/cancel an 
operation 

* Deleting a sketch is classified under 3D Features-related actions because a sketch is considered to be a part studio feature in Onshape Analytics once it is created. 
** Undo/redo/cancel operations are included under Other Organizing actions because they are recorded unlinked from design spaces. 
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that do not fit in any of the other five action types. A summary of this 
classification method, along with some sample actions, is presented in 
Table 2. 

Gopsill’s framework allows us to systematically examine a metric put 
forward by Xie et al. [28] by incorporating the concept of the ratio of 
building/revision to compare the ratio of creating versus revising ac
tions (e.g., resizing, reshaping, and deleting built structures) for 
different designers, as a metric of determining how iterative a design 
process is. Xie’s paper pointed out that a lower ratio of building/revision 
indicates a more iterative/reflective design process, whereas a high ratio 
indicates a more complex design, as designers continue building new 
structures and/or features [28]. With this second classification method 
of analytic actions, participants’ designing behaviours during the design 
challenge can be further investigated. We have slightly modified this 
ratio as the ratio of creation/revision, where revising actions are the sum 
of all editing, deleting, and reversing actions, and creating actions 
contribute to the numerator of the ratio. 

4. Case study of a collaborative learning activity 

To illustrate and evaluate the feasibility of the proposed framework, 
we collected data from a teaching activity and conducted analysis with 
the dataset as a case study. In this section, we first outline the details of 
the collaborative educational design activity used to generate the data to 
be analyzed via the framework. Next, we will demonstrate some analysis 
performed using the novel MUCAD-Collaborative Learning Framework. 
With survey responses collected from the learning activity, we compared 
survey responses and results analyzed through the framework to discuss 
the feasibility of the framework. 

4.1. Demonstration data collection 

The experimental data for this study was collected via a teaching 
activity conducted with the Tufts University Centre for Engineering 
Education and Outreach in the summer of 2020. The teaching activity 
initially aimed to provide an opportunity for incoming undergraduate 
summer research students of the lab to familiarize themselves with each 
other and other graduate students of the lab and be introduced to 
Onshape, the MUCAD software they would be using for their summer 
research projects. The teaching activity took place as an open design 
challenge, where participants were asked to build a playground in 
Onshape with their assigned teammate(s) in a maximum of one and a 
half hours. The task was open-ended; there were no intentions to 
appraise a winner of the design challenge, nor were there any incentives 
for students to create the best design. During the design challenge, the 
data analyzed in this paper were recorded for internal feedback. After 
the activity, consent from willing participants was collected after 
research ethics review approval was granted to use these data for 
research purposes. 

4.1.1. The design activity 
Before the design challenge, a pre-study survey was sent out to all 

potential participants through a Google Form. The survey asked par
ticipants to self-identify their gender and background CAD experience as 
either expert (“I am an Onshape pro”), intermediate (“I have used CAD 
but never used Onshape), or beginner (“I have never used CAD 

software”). For analysis, all experts (e) and intermediate (i) participants 
are considered to be experienced (E) participants, and all beginners (b) 
are considered to be novices (N). All teams have been randomly given a 
label from Team A to Team P, while members of every team have been 
given labels as X#, where X is the letter of the team’s label, and # is a 
sequential number assigned to individual members of the team. For 
example, Team A had members A1 and A2. For analysis, teams are 
considered to be either EE (all experienced participants), NE (a mix of 
novices and experienced participants), or NN (all novices) teams. 

The design challenge was held on the online conference platform 
Zoom, where all participants joined the meeting room virtually through 
their own computers. All participants were randomly grouped into 
fourteen teams of two and two teams of three by the organizer, where 
each team contributed to one design in one shared Onshape document, 
and teammates’ changes show up in real time. During the design chal
lenge, each team was either placed into their own Zoom breakout room 
or a breakout room with another team (which we call discussion rooms); 
eight randomly chosen teams were placed into four discussion rooms. 
Within each Zoom breakout room, participants were free to communi
cate through virtual video and audio conversation, text chat, and screen 
sharing. In discussion rooms specifically, members from the two sepa
rate teams within the breakout room were also able to communicate 
with each other. As an assistance for new users to Onshape, a website 
link [46] was explicitly mentioned by the organizers and provided to all 
participants before the design challenge started, where some tips on 
using Onshape and ideas on playground design were demonstrated on 
the website, created by the organizers. Besides this website, participants 
were also free to seek help from any resources from the internet and 
other participants in their assigned Zoom breakout room. 

While all participants communicated with their teammate(s) 
through their assigned Zoom breakout room, they collaboratively 
contributed to one shared CAD document in Onshape, which contains all 
Part Studios and Assemblies the team creates. After participants were 
distributed to their assigned breakout room and started their work, one 
organizer entered each breakout room to ensure all technology was 
functioning as expected and asked for verbal permission to record their 
breakout room for internal feedback. As requested by some participants, 
the organizer also gave a quick demonstration on building a slide in 
Onshape through screen sharing, instructions for which were also 
available on the given website at the beginning of the design challenge. 

After approximately one and a half hours of design time, all partic
ipants stopped designing and returned to the Zoom main room. The 
organizer opened each team’s CAD document and showcased every 
team’s design to all participants, and each team had the chance to 
describe their design briefly. None of these demonstrations were aimed 
for any kinds of formal assessments. After the teaching activity, a post- 
study survey was sent out to all participants to collect their reflections 
for the design challenge through another Google Form. The post-study 
survey was mainly designed to be used for internal training feedback, 
not explicitly designed for research purposes. Nevertheless, post-study 
survey questions on overall satisfaction and team contribution provide 
data which aids in the illustration of our proposed framework and are 
therefore reported in this paper. The relevant questions from the survey 
are summarized in Table 3. Questions were asked on five-point rating 
scales along with optional space for open responses. 

Table 2 
Action type classification, adapted from Gopsill et al. [38].  

Action Type Name Creating Revising Viewing Other 

Editing Deleting Reversing 

Summary of 
Sample Actions 

Add a sketch/Part Studio 
feature/Assembly feature 
Add a part from Part Studio 
in Assembly 

Edit a sketch/Part Studio 
feature/Assembly feature 

Delete a sketch/Part Studio 
feature/Assembly feature 
Delete a part in Assembly 

Redo/undo/cancel 
an operation 

Open/close a 
tab 
Call animate 
actions 

Create/delete/ 
rename a tab 
Create/merge 
version/branch  
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4.1.2. Experimental data 
After receiving approval from research ethics review and consent 

from participants, the research team was given access to (1) the actual 
CAD designs in Onshape created during the design challenge, (2) par
ticipants’ responses to the two surveys mentioned above, (3) video re
cordings of Zoom breakout rooms where verbal consents were given to 
the organizers at the time of the design challenge, and (4) backend an
alytic data automatically collected by Onshape during the design chal
lenge. For this research, all analytic data were downloaded and analyzed 
for each participant separately in the form of audit trails (chronological 
sequences of CAD activities) in CSV format, where all analytic actions 
were recorded in chronological order with corresponding timestamps to 
each action. The readily downloadable analytics from the platform itself 
featured some missing data, and therefore, for this research project, the 
researchers acquired complete data from the software provider via 
database query. This data set included some duplicate or redundant 
actions which were identified and removed by the research team (for 
example, when switching between tabs, the user technically closes a tab 
then opens a tab, but actually only takes one action). Although we 
collected recordings for several Zoom breakout rooms during the design 
challenge, they have not been analyzed for this paper. 

In total, we collected consents from 31 out of the 34 participants. 
Table 4 summarizes the demographic composition of the participants 
that have been included in the analysis for this paper. Meanwhile, 
consents were not provided by the teammates of three of these thirty- 
one individuals, restricting us from analyzing those three participants’ 
data at the team level. Data for the other 28 participants come from 13 
teams: seven EE teams, four NE teams, and two NN team; eleven teams 
of two, and two teams of three. Of the 31 participants included in the 
analysis, 27 of them provided pre- and post-study survey responses. 

All survey responses were organized into a spreadsheet and imported 
into NVivo, a qualitative analysis computer software, for open coding 
using the grounded theory method. Meanwhile, with access to the final 
CAD designs created during the design challenge, we examined these 
designs to aid our quantitative analysis and possibly explain any ex
ceptions that may have emerged from the analysis results. For example, 
Fig. 2 shows a screenshot of the final assembly of the playground 
designed by Team A (an EE team), whose design stands out in terms of its 
complexity when compared to Fig. 3, the parts designed by Team M (an 
NN team), who did not even attempt to assemble their parts in the As
sembly. Moreover, several error messages are also noticeable in red in 

Fig. 3, indicating that the team had not fully understood how those 
features work and left the design challenge without resolving the issues. 

4.2. Demonstration of analysis utilizing the MUCAD-CLF 

In this design challenge, over 20,000 actions were recorded from 31 
participants. In this section, results are first presented by applying each 
classification method in the proposed MUCAD-CLF individually. Then, 
analysis comprising multiple classification methods and post-study 
survey feedback are also conducted. 

4.2.1. Analysis of actions classified in design spaces 
For inter-team analysis of action count, we normalized by team size 

to account for the fact that some teams were three and others were two. 
In Fig. 4, the counts of constructive actions per member in each team are 
plotted to compare teams in the three team types (EE, NE, and NN). As 
an obvious trend, EE teams had performed more constructive actions 
than NE and NN teams. However, it is also worth noting that Team H, as 
an NN team, performed more constructive actions per member than all 
NE teams, being close to an EE-team level. However, constructive ac
tions of an NN team may also comprise a large amount of deleting and 
reversing actions as they tried to explore different features of the pro
gram, which will be further analyzed below. As shown in the NE cate
gory of Fig. 4, the average constructive actions performed per member in 
most NE teams consist of greater contribution from the experienced 
members, potentially signifying their leadership over the construction of 
the CAD model. 

As each team’s distribution of actions in the two design spaces (i.e., 
Part Studios and Assemblies) are plotted in Fig. 5, it is noticeable that 
Team M, an NN team, performed no edits in Assemblies. In general, most 
EE teams spent a greater proportion of their actions in Assemblies. 
However, although Team P performed a larger-than-average proportion 
of actions in Assemblies as an NE team, its total number of actions was 
small, and its number of actions in Assembly was even lower than the 
average number of other NE teams. In addition, Team G had a much 
lower-than-average number of actions in Assemblies as an EE team. 
After examination of Team G’s CAD design, it was found that the team 
had not used any mates or animation in Assemblies but simply inserted 
the two parts they had created in the Assembly and focused most of their 
efforts on changing the appearance of different parts created. On the 
other hand, Team A had design lots of animation in their Assembly, and 
Team L had used multiple Assemblies to organize their parts. Hence, 
different teams may have different foci and modelling approaches when 
designing, and some designs may not require as many assembling ac
tions as others for the desired visual presentation. For example, one 
modelling approach is to create multiple parts in one single Part Studio, 
where geometries are cross-referenced between different parts, such that 
all the parts are already roughly “assembled” in the Part Studio. Alter
natively, with a top-down modelling approach, the design is decom
posed and delegated to team members in different Part Studios before 
being inserted into the final Assembly. This modelling approach would 
then result in more Mating actions in Assembly. 

Further investigation into the detailed distribution of actions in Part 
Studios and Assemblies respectively reveals a noticeable unexpected 
trend that all teams had similar proportions of Sketching and 3D features 
in Part Studios, and Mating and Visualizing features in Assemblies. This 
observation is surprising, as different team types had varied proportions 
of actions in Part Studios versus Assemblies. In Fig. 6, it is shown that 
teams spent an average of 32.5% of their actions in Sketching and the 
other 67.5% in 3D features while designing in Part Studios. Similarly, it 
is also shown that teams, excluding Team M and Team G, spent an 
average of 19.6% of actions in Mating features and the other 80.4% in 
Visualizing-related actions in Assemblies. 

Organizing actions are behavioural actions that could further 
differentiate experienced CAD users from novices, where experienced 
participants may spend more effort on renaming features/documents 

Table 3 
Post-study survey questions.  

Question Statement Five-Point Rating Scale 

1 Point 5 Point 

1. Overall 
Satisfaction 

I enjoyed my experience 
today. 

I didn’t like it 
at all. 

I liked it a lot. 

2. Learning 
Experience from 
Teammate(s) 

I learned from my 
teammate. 

I didn’t learn 
anything. 

I learned a lot. 

3. Team 
Contribution 

Regarding my and my 
partner’s contribution 
to our playground: 

I contributed a 
lot less. 

I contributed a 
lot more. 

4. Future Interest 
in Onshape 

I am interested in using 
Onshape in the future. 

I’m not 
interested at 
all. 

I am very 
interested.  

Table 4 
Demographics of participants in the case study analysis.   

Expert (e) Intermediate (i) Beginner (b) Total 

Male 1 10 3 14 
Female* 2 7 8 17 
Total 3 17 11 31 

* The female category contains all non-male-identifying participants in order to 
preserve privacy of identity. 
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and creating versions, branches, etc., for better organization. Particu
larly, NE teams were expected to have performed more Browsing-related 
actions as the experienced participants in an NE team needed to assist 
novice team members by browsing between different Part Studios and/ 
or Assemblies. Examining in Fig. 7, the amount of Browsing-related 
actions alone shows that, as one might expect, an increase in Part Stu
dios being used in the design generally required more browsing actions. 
As plotted in Fig. 7, the locations of the data points with respect to the 
trend line could be a good indicator of the teams’ relative efficiency of 
workload and workflow design of any teams that participated in the 
design challenge. For teams located above the trend line, they may not 
have had efficient workload distribution as they frequently required to 
switch between Part Studios to finish their designs, wasting a significant 
amount of design time on browsing. On the other hand, teams located 
below the trend line should have had efficient workload distribution, 
managing different Part Studios with fewer browsing actions than other 
participated teams. At the same time, it was also a trade-off for 

participants to balance the time they spent on constructing their own 
designs and building better awareness of other parts of the design built 
by their teammate(s). 

4.2.2. Analysis of actions classified in action types 
Using the Action Types Classification method, analysis can be per

formed in a similar way to the previous classification method. 
Comparing different teams’ distribution of actions in the six action types 
in Fig. 8, it is noticeable that NE and NN teams have greater proportions 
of reversing actions than EE teams, potentially confirming the assump
tion stated previously that a larger-than-average amount of creating 
actions may have been taken for exploration of different features of the 
program. Examining the average of all experienced (E) and novice (N) 
individuals in NE teams, it is noticed that experienced participants spent 
a greater proportion of activity on viewing related actions than novices, 
which could reflect the assistance provided by the experts to the novices 
in the team. Team M, an NN team, had a much greater-than-others 

Fig. 2. CAD design of EE Team A in a final Assembly, with 11 Part Studios used.  

Fig. 3. CAD design of NN Team M, in separate Part Studios, without any final Assemblies.  
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proportion of creating actions and smaller-than-others editing-related 
actions, which may indicate that they only focused on building new 
structures or trying out different features without carefully revising 
them for a better design. As previously shown in Fig. 3, a number of 
errors remained unresolved in Team M’s final CAD model. 

Comparisons of individual participants’ creation/revision ratios can 
potentially provide a better understanding of the design behaviours of 
participants with distinct previous CAD experience and different gen
ders. In Fig. 9, it is first found that quite a few female participants had 
higher ratios of creation/revision than male participants in both expe
rience categories, indicating those female members of the teams 
contributed more to the construction of the CAD model. Although there 
is a perceived difference in the ratio between experienced users and 
novices, the difference is not clear for both male and female participants 
of different skill levels in this design challenge. Nonetheless, averages 
calculated from this dataset (0.688 for experienced males; 0.677 for 
experienced females; 1.08 for male novices; and 0.814 for female nov
ices) do show that experienced participants had undergone a more 
iterative design process than novices. 

Linking the two classification methods of analytic actions introduced 
above, Fig. 10 plots the relationship between the number of constructive 
actions per member of a team and the team’s ratio of creation/revision. 
With a negative relationship suggested by the trendline, the plot in
dicates that a larger proportion of constructive actions is more likely to 
be revision related actions as the number of constructive actions per
formed in the design process increases. Alternatively, one may conclude 
that all teams actually required only a similar amount of creating actions 
to construct all structures of their playground design, despite the 

difference in complexity, and the rest of the time and efforts were mostly 
spent on revising the created design. Teams with more background CAD 
experience performed more additional constructive actions, which may 
imply that they spent most of their actions revising their constructed 
features to perfect their designs. However, it is also noticeable that an 
NN team in Fig. 10 was a clear outlier from the general population. This 
observation could be explained as novices may have conducted a large 
number of random actions to explore and test the functionalities of 
different features in the CAD software. 

4.2.3. Analysis of team contribution 
We next compared participants’ self-evaluated team contribution 

scores with their analytically-derived contribution of different types of 
actions. An assumption we have made for the visualization and analysis 
in this section is that a five-point team contribution score on the post- 
study survey (i.e., “I contributed a lot more than my teammate”) 
would correspond to a 100% contribution of actions, meaning they have 
almost done all the work for the team. Although “contributed a lot more” 
would not necessarily mean 100% contribution to the team, we are 
exaggerating the contribution in this analysis for the ease of comparing 
between self-evaluated contribution and calculated contribution based 
on analytic data. Again, we have normalized team sizes to account for 
the fact that some teams were three and others were two. 

In Fig. 11, a comparison between participants’ self-evaluated team 
contribution score and their corresponding percentages of different 
types of actions contributed to their teams is made in terms of partici
pants’ genders and background CAD experience. In general, most 
experienced male participants seemed to over-evaluate their 

Fig. 4. The number of constructive actions per member by team types.  
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contribution compared to the analytic data, and most novices and most 
female participants have either accurately or under-evaluated their 
contribution. 

In order to further investigate how participants rated their contri
bution to the team differently when they were placed in different types 
of teams, a different comparison is made in Fig. 12. In EE teams, most 
male participants over-evaluated their contribution of actions to their 
teams, whereas females’ self-assessments were slightly more accurate 
than males. When experienced participants were paired with novices, 
experienced participants were able to accurately evaluate their contri
bution in terms of analytic actions, while novices tended to under- 
evaluate themselves. However, the analytic data does not fully capture 
assistance provided by the experienced participants, such as verbal in
struction and idea generation. In the two NN teams analyzed, however, 
most participants’ self-evaluated contributions do not match with the 
analytically-derived percentage of actions contributed to the team. 

With the question of which type of action should be the best metric to 
evaluate one’s contribution to the team, comparisons between partici
pants’ self-evaluated team contribution and the three types of analytic 
actions (constructive, organizing, and total actions) contribution are 
shown in Fig. 13. In general, no action types demonstrate a more 
consistent rating trend than others, and consistently, participants with 
higher self-evaluated contribution ratings did indeed contribute more 
actions in all types. However, there is not an obvious way for us to define 
a contribution grade to a participant simply based on their actions 
contributed to the team, since different self-evaluated contribution rat
ings were reported by participants with the same real percentage 
contribution of actions, and vice versa, as seen in Fig. 13. This therefore 

may indicate that a better classification method of analytic actions is 
required, or that we should not only consider a single type of actions 
contributed to the team when rating a participant’s contribution. 

4.2.4. Post-study survey summary 
All participants’ post-study survey responses were analyzed via open 

coding with the grounded theory, the results of which are summarized in 
Table 5. In general, participants reflected satisfying experiences from 
the design challenge, where only three participants (of 27 analyzed) 
reported a satisfaction rating below three (i.e., felt frustrated). Most 
participants also liked the teamwork arrangement for the design chal
lenge, as teammates introduced more knowledge and ideas, making it a 
more enjoyable learning experience than self-exploration of the CAD 
software. However, sufficient communication appears to be crucial for a 
good teaming experience. Moreover, novices seemed to require more 
guidance to approach the CAD software, even when help from the 
experienced participants in an NE team were available. As participants 
were asked to self-evaluate their contribution to the team, it is noted that 
16 out of the 27 participants reported equal contribution between their 
teammate(s) and themselves (i.e., a team contribution rating of three), 
and greater contribution gaps existed between members in NE teams. 

5. Discussion 

By proposing and applying multiple metrics of the MUCAD-CLF in 
this paper, we have demonstrated an approach for analyzing individual 
behaviours and team collaboration in the MUCAD environment with 
collected fine-grained analytic data. The results of this analysis could 

Fig. 5. Team distribution of constructive actions in design spaces. Number labels on bars represent the raw count of actions.  
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potentially provide additional perspectives to educators/researchers on 
assessing and assisting students with CAD learning and teamwork. While 
the focus of this study is on collaborative CAD modelling, our work on 
developing categories for classifying actions is also applicable to com
parisons between individual CAD users. Although the confidence level of 
the results presented in this paper may be limited due to the small 
sample size of the experiment and the unbalanced composition of 

participants (i.e., having few experts and NN teams decreases the con
fidence of the result), the MUCAD-CLF has revealed trends that certainly 
warrant further research and exploration. 

Employing the MUCAD-CLF proposed in this paper, several behav
ioural trends of participants with different background CAD level are 
summarized: (1) teams and members of the team with more CAD 
experience tended to perform more constructive actions, contributing to 
the complexity and advancement of the design; (2) all participants 
showed similar behaviours in different design spaces (Part Studio and 
Assembly) based on analytic data regardless of differences in CAD 
experience; (3) participants with more CAD experience tended to un
dergo more iterative design processes; and (4) there is greater 
misalignment between novices’ self-evaluated contribution and their 
analytically-derived contributions. More importantly, using a combi
nation of multiple metrics from the MUCAD-CLF could be helpful for 
educators and researchers to visualize and assess individual students’ 
CAD designing behaviours with respect to the class average and easily 
identify students that require additional assistance. For example, a 
comparison of Browsing-related actions versus Part Studios used in the 
design process could reveal the efficiency of workload distribution and 
workflow design of a team, as shown in Fig. 7. Also, linking the number 
of constructive actions performed by a team to the team’s creation/ 
revision ratio, as in Fig. 10, could be an informative metric to assess how 
well students carry out an iterative design process, which is deemed to 
be an important component in engineering design/education [28] and 
has been studied by researchers for many years [47,48]. While an 
instructor is monitoring a class learning to CAD model, students or teams 
that are advancing too fast with the design (i.e., they may lack sufficient 

Fig. 6. Team distribution of constructive actions in design spaces.  

Fig. 7. The number of Browsing actions versus the number of Part Studios used, 
with a linear regression line of best fit. 
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revision by missing constraints or fully dimensioned sketches) or too 
slow with the design (i.e., they may not have enough time to complete 
the design if they keep struggling) can be easily identified as they locate 
far away from the average trendline. Consequently, instructors can 
provide effective feedback during students’ learning process. 

Based on feedback received from the post-study survey, it is observed 
that the MUCAD design challenge was favourable to the majority of 
students. Most students recognized this team exercise as a beneficial way 
for them to learn the CAD software, which signifies the opportunities for 
conducting similar activities with collaborative CAD modelling for 
future research. Further, based on survey responses, we anticipate that 
collaborative CAD designing has the potential to facilitate better the 
cognitive apprenticeship teaching method proposed by Huang et al. 
[31], which is beneficial in stimulating students’ metacognitive behav
iour, leading to success in problem-solving skills. It is important to note 
that in our study, we found that more guidance should be provided to 
novices at the beginning of the design challenge, in the form of a brief 
introduction to the software, or else meaningful collaboration is chal
lenging, placing additional pressure on the more experienced member(s) 
of the team. 

Meanwhile, several findings from this study may facilitate future 
research. While we observe that some female participants exhibited 
higher creation/revision ratios than did males in the design challenge, 
Xie et al. presented opposite findings when their students were asked to 
design in CAD individually [28]. Although we do not have a large 
enough data size to make a meaningful conclusion on the gender 

difference, the observed difference based on our preliminary data 
certainly suggests that past trends should be revisited and therefore 
gender is an important variable for future experiments with our pro
posed framework. Slight disagreement observed in this experiment 
could potentially be explained by examining differences between gen
ders in a collaborative CAD environment, where the analysis of audio/ 
video recordings in the form of case studies will be crucial [49]. Analysis 
of the audio/video recordings may also result in an understanding of the 
generally observed higher self-reported contribution level from experi
enced participants; this finding could indicate that there exist other 
factors of the contribution that are not captured by the collected analytic 
data, where the inclusion of more perspectives may yield better under
standing on how students assess their own contribution to a team. As 
Stone et al. concluded, teams with different communication patterns 
tended to perform differently [10]. With low communication levels, the 
benefits of the collaborative nature of MUCAD are not realized, and 
consequently, we observed team members reporting more negative re
flections after the design challenge. 

Therefore, although analytic data provide novel and rich insights on 
students’ design process for educators and researchers that are not 
captured by traditional CAD software, to best assess a student’s CAD 
design learning, we should not solely rely on analytic data but also 
consider other factors, such as the quality and complexity of the actual 
designed product, the idea generation process, and communication 
during the design process. 

As we have carried out our analysis solely relying on participants’ 

Fig. 8. Team distribution of actions in action types through the design process.  
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self-evaluated CAD experience on the pre-study survey, we acknowledge 
that improvements are required for future work. As we asked experi
enced participants to classify themselves as either an intermediate (“I 
have used CAD but never used Onshape”) or expert (“I am an Onshape 
pro”) CAD user, there is no suitable category for participants with some 
Onshape experience but not yet professional. Also, the levels of experi
ence participants have with other CAD software could also vary widely, 
which was observed in the post-study survey responses. Besides, early 
research showed that people’s self-perception of CAD skills is deemed to 
be generally not accurate [9], or it could be described as a phenomenon 
of the Dunning-Kruger effect [50]. Hence, we would expect more ac
curate research findings with a more reliable CAD-skill evaluation rubric 
to be developed, which could involve more quantitative measurements 
that help students better assess their CAD expertise [35], or future 
research could simply define participants’ expertise by counting the 
number of feature types that they have mastered to use during the design 
process. 

While we study participants’ design behaviour fully based on ana
lytic data, we have not closely examined the resulting CAD model in the 
analysis. With future work on assessing the characteristics of the actual 
model (e.g., completeness, creativity, useability, etc.), the combination 
of data analytics with the graded models may yield informative impli
cations on the types of design behaviour that may lead to a better 
designed product. While we have only analyzed the analytic data in 
aggregate counts of actions over the entire design process, future work 
can also examine the process in a time-series manner. CAD tools are 
increasingly seen as tools not only for detailed design (embodiment), but 
also for conceptual design [51]. However, the use of CAD tools in the 
conceptual designing phase of the design process may lead to premature 
fixation and bounded ideation, negatively impacting the team’s crea
tivity [52]. The use of our MUCAD-CLF to study the impact of different 
types of design behaviour in different stages of the design process, in 
particular with a creativity lens, is anticipated to provide better guid
ance for engineers on using CAD tools for enhanced visualization and 
structural accuracy while preserving designers’ creativity, especially in 
the newly emerging MUCAD environment. 

6. Conclusion 

In this paper, we have proposed a MUCAD-CLF for educators and 
researchers towards understanding students’ CAD design behaviours 
when working and learning individually or collaboratively in a MUCAD 
environment, based on the use of backend user data. By classifying 
designer actions into different categories using the MUCAD-CLF, com
parisons between student groups based on one or multiple action cate
gories can yield meaningful implications on how students with different 
levels of experiences, and potentially different genders, behave. We 
anticipate that the MUCAD-CLF will inform the best practices of teach
ing CAD with a quantitative assessment of students’ learning process for 
more responsive feedback and learning CAD in a collaborative envi
ronment that enhances teamwork. 

Although no statistically significant conclusions could be drawn from 
our study, we encourage future research to apply the framework to 
generate insight and inform best practices for learning CAD in team- 
based design activities. With data analyzed from a collaborative 

Fig. 9. Individual ratios of creation/revision. Note: research consents were not given from teammates of B2, D1 and J1.  

Fig. 10. The ratio of creation/revision versus the number of constructive ac
tions, with a linear regression line of best fit. 
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Fig. 11. Comparison between self-evaluated team contribution with analytic actions.  

Fig. 12. Comparison between self-evaluated team contribution with analytic actions by team types.  
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MUCAD design challenge, we demonstrate the utility of the proposed 
MUCAD-CLF via results of its application. In even a limited demon
stration application, the proposed framework generated evidence to 
confirm that experienced CAD participants exhibit more obvious lead
ership in teams and desirable iterative design behaviour. 

While traditional assessments for CAD learning mainly rely on 
qualitative information, quantitative data analysis provides a comple
mentary and potentially more objective lens for educators and re
searchers, being reflective of the real user actions. Integrating the 
MUCAD-CLF with a commercially available CAD platform may allow 
this data-based analytical framework to be more accessible to other 
educators and researchers. As all analytic data are automatically 
collected and obtained from the cloud, educators and researchers can 
monitor and assess without physically being in the same place as the 
designers. Once the data are examined with the MUCAD-CLF, results can 
be easily visualized. With increasingly prevalent work and study from 
home, establishing learning activities on a cloud-based MUCAD envi
ronment has the potential to lead to better learning outcomes for stu
dents in both CAD skills and teamwork. 
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