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What Sets Proficient and Expert
Users Apart? Results of a
Computer-Aided Design
Experiment

As computer-aided design (CAD) tools have become an essential aspect of modern mechan-
ical engineering design, the demand for CAD experts has increased significantly. The devel-
opment from novice, to proficient, to expert user is of particular interest to the industrial and
academic design communities. Yet little is known about the development of modeling
choices, strategies, and patterns that characterize expert CAD skills; much of the past
work that reports user action data is based on student or novice data. We compared the
CAD modeling process across nine proficient and ten expert designers as they were
tested to complete the same design task. Under identical conditions—the same time con-
straints in the same CAD platform and with the same task—the expert users were able to
complete a larger proportion of the task with higher dimensional accuracy. While the
experts were able to dissect and retrieve geometries from manufacturing drawings more
efficiently than proficient users, they were also able to plan a modeling strategy that
required less effort and revisions. With our experimental findings, we identify the
demand for procedural knowledge-building for young engineers, with the ultimate goal

of more effectively developing experts in engineering design with CAD.
[DOI: 10.1115/1.4063360]
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1 Introduction

Computer-aided design (CAD) has become an indispensable tool
in the modern field of mechanical engineering design and manufac-
turing. The fundamental role of CAD is to create computational
representations for manufacturing specifications of products
through 2D drawings and 3D models [1]. The use of CAD supports
engineering work in design, analysis, and communication, which
eventually leads to better engineering task performance [2]. CAD
has been increasingly important given the growth of new technol-
ogies such as augmented and virtual reality [3], mechanical simu-
lations [4], and additive manufacturing [5]. With the availability
of big data, as increasingly shared online, and accessible through
modern cloud platforms, CAD has also been an effective tool
for researchers to understand modeling processes and design
thinking [6-8]. These advancements—more data and improved
interfacing—further support the development of related artificial
intelligence (Al) technologies in CAD [9-11]. While the popularity
and importance of CAD continue to grow, the existence of CAD
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has long been embedded in almost all stages of the product devel-
opment process [12].

Reflecting the growing demand for expert CAD designers in
industry, modern engineering education includes CAD instruction,
with the ultimate aim of teaching engineering design, analysis, and
collaboration [13]. A basic engineering education from university
programs and entry-level work experience likely enables new grad-
uates to construct models with medium to high complexity in CAD,
but few are yet CAD experts. As in any other field, it takes time and
deliberate practice to become an expert through gained experience
[14-16]. Yet a major gap persists in our knowledge of modeling
expertise, and correspondingly CAD expertise, as raised by Cross
in 2004: “How is the transition made from novice to expert?” [17].

Two engineers may use different modeling approaches to reach
geometrically identical final products with modern CAD software.
They may make different modeling choices, in different orders, or
develop patterns in the features they choose. The variability in the
modeling process is widely observed among different designers in
CAD [18]. Meanwhile, some approaches are certainly more effi-
cient than others, some approaches better capture the design
intent of the model [19], and some approaches result in more
robust and flexible models to be reused for future design iterations
[18,20]. While novice designers do not necessarily need to worry
about modeling efficiency and flexibility in their early learning
process, they tend to rely on trial and error when approaching a
modeling task [21]. This trial-and-error approach is not particularly
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interesting to study from an analytics perspective—the data can be
noisy, and they are difficult to characterize consistent patterns,
which we would expect to see in the analytic footprints of more
experienced designers.

Indeed, few studies characterize the modeling process of expert
CAD designers, and many studies of design behaviors have been
based on novices, and usually students, due to the challenges in
recruiting experts [17]. In the broader field of design, some
studies exist of either experts with extensive professional engineer-
ing experience or novices that are new to the field (students in most
cases), where comparisons are sometimes made between these two
groups [21-24]. The same is also true for CAD research specifi-
cally; while CAD has been an important part of the engineering cur-
riculum for many years, most design and modeling research in CAD
is based on student (novice) data and largely focuses on educational
settings [25-31]. The CAD research based on industry CAD experts
is predominantly conducted at small scales [32,33]. Nevertheless,
little work exists to characterize expertise levels apart from the
binary of novice and expert; our study focuses on an intermediate
level of expertise, which we call “proficient.” We are motivated
to compare proficient, instead of novice, and expert designers
because, as we will later describe, we expect that proficient users
and expert users have developed sufficient declarative knowledge
such that the actions that we witness are meaningful intentions
versus experimentation or learning. Therefore, we tap into the
users’ procedural knowledge, which has been described as key to
CAD expertise. While we cannot expect someone to transition
from a novice to an expert at once, better understanding the exper-
tise of a proficient user allows us to identify the most prominent
characteristics of, and hence the gap from becoming, an expert in
CAD.

In this study, we aim to investigate the difference in CAD mod-
eling between design experts and designers who are proficient, but
not yet expert. Following the industry-standard approach that is
used to test the CAD skills of individuals, as how most CAD soft-
ware providers test their users when issuing certificates of mastery
of the tool [34-36], we designed a four-step modeling task that asks
the participants to re-create a solid model in CAD given its manu-
facturing drawings. Under identical time constraints, we evaluated
the completeness and correctness of the resulting models from the
two groups of participants, where we found that the self-identified
experts were indeed able to complete a larger portion of the task
with higher dimensional accuracy. Closely studying the modeling
actions of every participant, we compared the action counts, the
time spent on each action type, and the transitions between consec-
utive actions of the two groups of participants. Analysis showed that
the difference in modeling performance, as measured by both task
completeness and correctness, between experts and non-experts
was observed to be impacted by modeling efficiency in sketch cre-
ation and model revision. Further, experts also showed more strate-
gic referrals to drawings during the CAD modeling process. Finally,
we discussed how these findings may inform future modeling
behaviors with CAD and the field of engineering education.

2 Background

2.1 Declarative and Procedural Knowledge in Computer-
Aided Design. Cognitive psychologists categorize knowledge
into two types: declarative and procedural (also known as strategic)
knowledge [37]. Declarative knowledge focuses on the specific
commands and procedures used to achieve a goal, while procedural
knowledge considers the alternate methods by which the same goal
may be achieved and the process by which a choice may be made
[38]. In the specific context of CAD, declarative knowledge consists
of the mastery of commands that a designer carries out within the
software to use the modeling features, and procedural knowledge
consists of the higher-level strategies that the designers use to
carry out the series of commands [27]. Meanwhile, both types of
knowledge in CAD can be highly cognitive and hard to be
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quantified for evaluation [39]. To model effectively and efficiently
in CAD, the possession of both types of knowledge is critical. But
logically, a designer would need to first develop a solid foundation
of declarative knowledge in CAD before being able to develop pro-
cedural knowledge through modeling experience.

Declarative knowledge is typically the only form of knowledge
taught in short-term CAD training courses and written in technical
product manuals, at least partly because from the CAD software
development standpoint, effectively explaining and improving the
functions of the features (i.e., the declarative knowledge of CAD)
are the immediate focus of CAD service providers. These effects
have been demonstrated among novice designers, for example,
Peng et al. found that novice students do not naturally consider
factors such as model robustness and flexibility for reuse and mod-
ifications in CAD unless otherwise incentivized to do so [25]. Thus,
designers learn high-level modeling strategies (i.e., procedural
knowledge) either through some form of long-term education or
extensive experience in the industry. Unfortunately, the didactic
approach has long been the dominant pedagogy for learning in
both education and industry, and such initial teaching plus experi-
ence does not necessarily lead to the development of expertise
[40]. The lack of improvements via didactic approaches on stu-
dents’ analytical, strategic, and visuospatial abilities eventually
led to deficiencies in digital modeling abilities [41].

Via years of research in product design and solid modeling in
CAD, researchers and industry experts have developed various
best practices for CAD modeling, an important part of the procedural
knowledge in CAD. While different modeling strategies have differ-
ent foci, one over-arching best practice is to build models that are
more parametrically stable with the design intent clearly conveyed
for other designers to understand [19,20,28,42,43]. In such a way,
the CAD models can be maintained more sustainably for long-term
product development. Based on findings from past research, the
expertise of procedural knowledge is often the main differentiation
between expert designers and students in CAD [44]. Even though
the mastery of different CAD systems likely requires different
declarative knowledge, the procedural knowledge developed via
the use of any CAD system was found to be highly transferrable
and advantageous for expert designers [27]. When designing in
CAD, Ahmed et al. found that experienced designers were more
likely to use particular design strategies, which novices were
unaware of, instead mainly relying on trial and error [21]. To
enable CAD training that emphasizes the acquisition of procedural
knowledge, existing proposals often focus on the application of cog-
nitive apprenticeship, where the trainees can learn from experts
about both the dissection of the problem and the modeling process
at the metacognitive level [45,46].

As the literature suggests, the expertise of procedural knowledge
has been described as the main gap that a novice engineer or
designer needs to develop through their career to become an
expert. In this study—as a main differentiator from the existing
CAD analytics literature which examines novice CAD users—we
recruited both experts and proficient CAD users in this specific soft-
ware platform, such that they had already developed sufficient
declarative knowledge of CAD. In this way, our study can more
precisely identify differences in observed actions, which we
expect to be driven by differences in procedural knowledge.

2.2 Studies of User Actions in Computer-Aided Design.
Traditional research on engineering design processes mainly
relies on interviews, surveys, and audio and video recordings
[23,32,47]. While these analysis methods provide high resolution
and flexibility, they typically require time- and labor-consuming
qualitative analysis that is prone to be subjective, whereas
methods that enable computer-based data collection and automated
analysis are sorely needed [48]. In recent years, researchers have
started to utilize user analytics that records both geometric data of
the features and user actions committed in CAD [7]. This emerging
research method does not only provide fine-grained data on
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modeling actions in CAD for scalable data-driven design analysis,
but it also enables data collection that is non-obtrusive to the
research subjects during the design process [6,49,50].

With a large amount of analytic data being logged for a modeling
process in CAD, the most fundamental analysis that can be per-
formed is to count the number and time spent on actions aggre-
gately. Due to the large variety of actions that are usually tracked
in a CAD platform, user analytic data are often first categorized
into a smaller set of meaningful categories that are both manageable
for research interpretation and designed to answer the research
questions that a study aims to solve [6,50,51]. Then, analyses can
be performed by comparing the number of actions in different cat-
egories [50-52], the proportion of different action categories
[50,51], and the densities (or frequencies) of actions of specific
types between users [29,53]. Further, customized ratios that
combine and compare multiple action categories can be used as
effective metrics of specific modeling behaviors that are of interest
in the study [29,52,53].

While aggregate measures of user analytics enable efficient anal-
yses and comparisons between designers in CAD, the analytic data
themselves are time-based in nature. As user analytics typically
records modeling actions with timestamps of occurrence, research-
ers can theoretically rebuild the entire design process based on the
collected data logs in chronological order. For small-scale experi-
ments, qualitative coding of time segments [23], and even simply
plotting out the complete data log over time [18,52,53], can effec-
tively allow visual comparisons between multiple time-series
sequences to identify differences in the design process. For datasets
of larger scale, some researchers have focused on the transition
between actions. Markov Chains and hidden Markov models
(HMMs) are often used to find process heuristics from designer
data for best design practices in CAD [6,51,54,55]. Studying the
transitions between actions often assumes all transitions to be inde-
pendent of time, ignoring the difference in behaviors in different
stages of the design process. With a large quantity of time-series
design process data, machine learning technique can be applied
such as deep learning neural networks [11,56,57], clustering algo-
rithms [6,33], and Bayesian network models [58].

In this study, we analyzed the modeling process primarily based
on user analytic data (essentially all mouse clicks committed by the
users) that were collected non-intrusively by the CAD platform in
the backend. As we applied metrics with aggregate counts of differ-
ent types of actions to compare the full modeling process between
participants, we also examined the transition between modeling
actions using the hidden Markov models. We expect the utilization
of both data analysis approaches would help us to dissect the differ-
ence between proficient and expert designers in CAD with both
high-level and detailed comparisons.

3 Method

For this experiment, we designed a 35 min-long modeling task,
where participants were asked to rebuild a model in CAD given a
corresponding set of manufacturing drawings. Here we aim to
collect CAD modeling actions from skilled designers in a natural
and non-intrusive manner. The practice of rebuilding physical

models in CAD has been a widely adopted method for CAD instruc-
tion as well as a technique for designers to improve their CAD skills
by working on a well-defined and close-ended modeling problem.
In fact, nearly all commercially available CAD software platforms
nowadays adopt a similar task when testing users’ ability to
master the features in their software, where certificates are
awarded to those who can accurately re-create the given model
[34-36]. This type of task allowed us to compare performance
and approach across participants in a way that is not possible
with an open-ended task where final designs may be vastly differ-
ent. While CAD modeling in and of itself is an important skill for
detailed design, the closed-ended nature of the task is not necessar-
ily generalizable to open-ended design more broadly; correspond-
ing limitations resulting from our choice of task are further
discussed in Sec. 5.3.

Our study participants were asked to self-identify as either an
expert- or a proficient-level CAD designer from a three-level
scale developed to describe background CAD skills and experience
(exact descriptions are introduced in the following sections). After
the experiment, we first evaluated the completeness and correctness
of the resulting CAD models of the two groups of participants in
this modeling task. With all modeling actions collected non-
obtrusively during the modeling process, we were then also able
to compare the difference in the modeling process between design-
ers with different levels of CAD expertise. This study was reviewed
and accepted by our institutional ethics review board.

3.1 Experiment Settings. As shown in Fig. 1, the full experi-
ment session lasted 90 min, conducted in a fully virtual setting
through Zoom. The experiment first started with an introductory
presentation, where the overall experiment flow and general instruc-
tions were explained to the participant, along with the context for
the study. Specifically, participants were repeatedly told to not
rush through the tasks and maintain high standards, and follow
their typical CAD workflow. For both CAD tasks, participants
received one verbal cue near reaching the end of the allowed time
for each of the two tasks (10 min for Task 1 and 5 min for Task
2). Meanwhile, no additional instructions were given by the
researchers once the tasks started. After the introduction, the partic-
ipants were asked to share their screens throughout the experiment
for the researchers to record their actions within the CAD interface.
Meanwhile, all participants were asked to use one computer screen
only, such that it was consistent among participants.

In the first task (Task 1) participants were asked to create a CAD
model from scratch based on the given manufacturing drawings
(more details explained in Sec. 3.3). This paper focuses solely on
this task, and it is referred to as the modeling task hereafter. In
Task 2, participants were asked to modify their CAD model from
Task 1. Task 2 is excluded from this paper because it was found
to be too easy and could not differentiate participant performance.
Effective comparisons between participants were also not feasible
for Task 2 as modifications on geometries created in latter steps
of Task 1 could not be performed for participants who did not
finish those steps in Task 1. Short interviews were also conducted
at the end of each task to allow participants to explain their model-
ing strategy.

Not included in this paper

A

CADTask 1 jgum
(Create)

" Introduction 0% Shoit

15 mins - 15 mins

Interview

| CcADTask2 || Poststudy e B
(Modify) Interview
= 15 mins -

10mins [

a— o 35 mins
Experimenter ’ Participants share their screens

for the remainder of the study

shares screen

Fig. 1
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All experiment tasks were delivered and completed in ONSHAPE, a
cloud-based CAD platform. Modeling in ONSHAPE is very similar to
any other commercially available mechanical CAD software.
However, all files are accessed and hosted through a web
browser. In ONSHAPE, a document acts as a container that holds all
related files (e.g., drawings in PDF format) and CAD designs
(e.g., parts and assemblies) related to a project. Meanwhile, the
researchers were able to manage all files in the lab’s oNsHAPE Enter-
prise account. Before the experiment, each participant was given
access to an ONSHAPE account created by the researchers, and they
were allowed to personalize interface settings (e.g., keyboard short-
cuts) to match their preferences. Meanwhile, an oNsHAPE document
was created for every participant with all detailed experiment
instructions provided within the document. Participants were only
given access permissions to the documents when the task started,
and the access was then revoked right after the task ended.

As a user model in ONSHAPE, the platform also automatically logs
all actions the user commits. Essentially, every click the user makes
will be recorded non-intrusively in the backend (e.g., “Tab Step
1.pdf of type PARTSTUDIO opened by [participant],” “Insert
feature: Sketch 1,” “Edit: Extrude 17). After the experiments, the
researchers were able to export all user actions in the form of an
audit trail, where all actions can be retrieved sequentially with time-
stamps to algorithmically rebuild the modeling process. Especially,
for the use of every CAD feature in ONSHAPE, the start and end (com-
pletion) times of the feature are recorded.

3.2 Participants. We recruited and studied participants who
were either proficient or expert CAD users. All CAD modeling
tasks were performed in ONSHAPE; since we did not want to study
the effects of learning a new software tool, we targeted participants
with experience designing in oNsHAPE specifically. Thus, research
participant recruitment messages were sent to university students
through instructors of specific CAD design courses, industry
CAD users through PTC Inc., Boston, MA (the parent company
of onsHaPE), and CAD hobbyists through the public ONSHAPE
forum. Participants were compensated at a rate of $15/h, except
seven PTC employees (four experts and three proficient users, as

400 ’

350

300 ¢

250

200

150

100

Overall CAD Experience (months)

Proficient
Experience Level

Expert

defined below), who participated voluntarily and received no com-
pensation at the request of PTC.

All participants were required to have used CAD software of any
brand for at least 12 months consistently, where more than 6 months
of previous CAD experience must be oNsHAPE specific. Upon the
expression of interest in participation, participants were also
asked to self-identify their CAD ability level, where three choices
were given as follows:

e Expert: I have extensive experience using CAD in a profes-
sional setting or teaching CAD to students, with a good
mastery of CAD principles and regularly work with large
CAD models with complex geometries/assemblies and large
feature counts.

e Intermediate (Proficient): I am comfortable making medium to
high complexity parts that include multiple sketches, data, and
features. I have used CAD for personal and/or team projects
and made meaningful contributions to the models.

e Novice: I understand the basics of CAD, have made a few
simple parts, and followed some CAD tutorials. I have used
CAD for course labs/personal projects/team projects.

Meanwhile, only individuals who self-identified to be either an
expert- or an intermediate-level CAD user were considered for invi-
tation. Of the 90 individuals who expressed interest in participating
in this experiment, 40 were invited to participate, and 19 individuals
(17 men and 2 women) eventually participated in the study. In this
paper, participants who selected the “intermediate” option are
referred to be proficient CAD designers. By definition of their pre-
study survey response, they have sufficient CAD skills to comfort-
ably model complex parts but have yet to develop their expertise
through professional industry experience.

Based on their self-identified CAD experience levels, all partici-
pants were divided into one of the two experience groups, proficient
(n=9) and expert (n=10). Meanwhile, all participants were also
asked to provide a quantitative estimate of their usage experience,
either in terms of hours (e.g., 600 usage hours) or years and
months (e.g., 4 years and 3 months). As shown in Fig. 2, experts
self-reported generally a greater amount of CAD usage experience

70

Onshape Experience (months)

10

Proficient

Expert
Experience Level

Fig. 2 Self-identified CAD experience of participants in months. The boxes show the quartiles
of the dataset, and the whiskers extend to the rest of the distribution. Outliers that lie beyond 1.5
times the interquartile range are marked as points.
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Fig. 3 The final model of the modeling task with major features
labeled, for reference

than the proficient group, both across all CAD programs (Uexpere =
10 and piproficient = 7 years equivalently) and in ONSHAPE specifically
(Mexpert=2.9 and piproficient = 2.2 years equivalently).

3.3 The Modeling Task. The modeling task required the
participants to rebuild a CAD model of the reference model
shown in Fig. 3. The task was separated into four sequential
steps, where the completion of each step requires a roughly equal
amount of work, and each step adds new features to the existing
model in a progressive manner. The CAD models that the partici-
pants were expected to produce by the completion of each step in
the modeling task are shown in Fig. 4. As the participants were
given access to their oNSHAPE document, the detailed manufacturing
drawings with dimensions for each step were already stored in sepa-
rate PDF files within the document, as shown in Appendix A.

3.4 Performance Evaluation. Although the modeling task
was scheduled to be 35 min, we expected the time to complete
the full task would be longer. We aimed to place a higher value
on the modeling process itself instead of conducting a simple
binary evaluation of whether a participant was able to re-create
the model with identical dimensions.

To score the participants’ models, the same manufacturing draw-
ings were re-labeled with the minimum number of dimensions that
can fully define the geometries (60 total). If all labeled geometries
of a participant’s model match the dimensions in the drawings,
the model is deemed geometrically accurate. The version of the
drawings that were used for grading is shown in Appendix B.

We measured both the completeness and the correctness of the
participants’ model as the evaluation of their performance. Of the
60 total dimensions that fully define the model, assume a participant
attempted to build a model that would satisfy 72,empiea dimensions

and got 7¢oec dimensions matching the correct dimensions, as out-
lined in the provided drawings, we define

Mattempted
Completeness = ——<
60
Hcorrect
Correctness = ————
Nattempted

3.5 Analysis Methods. With the participants’ modeling
process recorded in the form of an audit trail of actions in CAD,
we analyzed both the time spent on actions and the transition
between actions. To measure a user’s time spent on modeling
actions, all action types can first be categorized into a selection of
meaningful categories, as outlined in the framework proposed in
Ref. [50]. Adapting a metric developed and used in previous
works [50,52], we used the -creation/revision time ratio to
measure how well a participant was able to rebuild the CAD
model based on the manufacturing drawings with minimum revi-
sions of the features. Essentially, the ratio compares the aggregate
time that a user spent on actions that are related to creating new fea-
tures to the time spent on actions that revise existing features in the
model, where a higher ratio indicates fewer revisions.

While comparing aggregate metrics provides a high-level view of
participants’ modeling processes, time-based patterns must be
explored with alternative techniques. Specifically, we aimed to
explore process heuristics from the experts that are different from
the proficient group. When analyzing the transition between model-
ing actions, we used an HMM to represent the modeling process of
the participants. When training an HMM model, we treat the system
of interest (i.e., the modeling process) as having a discrete number
of hidden states that cannot be directly observed, where each hidden
state has a probability distribution associated with a set of possible
emissions (i.e., the recorded modeling actions). Modeling the entire
system as a stochastic process with the HMM, we can study the
transitions between the hidden states and the relationships
between emissions and hidden states [59]. In the field of engineer-
ing design specifically, McComb et al. previously showed the effec-
tiveness of using an HMM to describe design processes and
discover procedural differences between high- and low-performing
designers [55].

4 Results

4.1 General Task Performance. As introduced in Sec. 3.4,
we evaluated performance as both the completeness and the correct-
ness of final models generated by the participants. As shown in
Fig. 5, the expert group generally outperformed the proficient partic-
ipants in terms of both completeness and correctness. We tested the
distribution of the two metrics between two groups of participants
using one-tailed Mann—Whitney U tests with the alternative

Step 1 Step 2

Step 3 Step 4

Fig. 4 Reference models by completion of each step of the modeling task. Step 1 establishes
the main body feature and the flanges; step 2 adds the radiator feature; step 3 adds the tilted
bore, angled tabs, and two small holes; and step 4 creates a supporting stand as a separate

part.
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Fig. 5 Modeling performance of participants. The boxes show the quartiles of the dataset, and
the whiskers extend to the rest of the distribution. Outliers that lie beyond 1.5 times the inter-

quartile range are marked as points.

hypothesis stating that the expert group outperformed the proficient
group. Specifically, there was a significant difference (U="73.0, p =
0.011) in completeness between the experts (1 =0.80, 0 =0.18) and
the proficient group (4 =0.56, o=0.24). Meanwhile, the difference
between experts (4 =0.94, 6=0.053) and the proficient group (u =
0.88, 6=0.075) in correctness was also statistically significant (U =
68.0, p=0.032). In other words, it was observed that the experts
were able to finish a greater portion of the modeling task with
higher accuracy. At the same time, the difference in task perfor-
mance also demonstrated that participants’ self-evaluated CAD

experience level was indeed an effective measure to be used for sub-
sequent analyses.

4.2 Action Counts and Time Spent. As enabled by the audit
trail of the CAD platform, we were able to analyze all actions per-
formed by the participants. Specifically, we counted instances of
select actions to compare across participants, and with the start
and end times also recorded, we were able to calculate the cumula-
tive time spent on each of these actions. As presented in Table 1, we

Table 1 Action counts and time spent on the modeling task, standardized by individuals’

completeness

Analysis type Action type Expert Proficient Comparison

Occurrence count Create sketches 16.4 (4.26) 17.6 (4.37) 38.0
Create features 332 (11.2) 28.0 (6.88) 56.0
Edit sketches 11.1 (8.61) 14.1 (14.7) 37.5
Edit features 11.1 (14.2) 9.82 (5.98) 38.0
Cancel operations 12.4 (10.4) 24.8 (21.7) 18.0%*
Delete features 1.56 (2.36) 3.12 4.07) 355
Open drawings 72.3 (37.3) 108 (77.9) 26.0
Undo/redo actions 4.07 (3.48) 20.2 (24.2) 19.5*
Create folders 2.51 (4.02) 0.303 (0.909) 63.0
Rename features 5.21 (12.9) 5.97 (16.2) 45.0

Time spent (s) Create sketches 714 (395) 1289 (489) 20.0*
Create features 550 (183) 625 (324) 39.0
Edit sketches 183 (132) 855 (1676) 27.0
Edit features 107 (139) 128 (82.5) 29.0
Canceled creation 78.5 (58.2) 139 (73.2) 23.0
Canceled edit 18.5 (25.8) 70.7 (72.4) 23.0
Read drawings 734 (278) 1258 (671) 20.0%*

Note: For both expert and proficient participants, the mean of the group was calculated with standard deviations
reported in parenthesis. Comparisons between the two groups were made with two-tailed Mann—Whitney U tests,
with the null hypothesis stating the distribution underlying sample x is the same as the distribution underlying

sample y. * indicates p <0.05.
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Fig.6 Creation/revision time ratio of participants compared to expertise, completeness, and correctness. Participant creation/
revision time ratio was found to be a statistically significant predictor of model correctness.

compared both the counts and time spent on actions, standardized
by individuals’ completeness percentages (a measure of their
attempted progress through the task), between the expert and profi-
cient participants in the modeling task with two-tailed Mann—
Whitney U tests.

While users perform part modeling in CAD, there are typically
two main types of constructive actions as outlined in Ref. [50]:
sketching-related actions that work with 2D geometries, and other
features-related actions that work with 3D solids (e.g., extrude,
revolve, fillet). Earlier in the paper, experts were shown to be
able to complete a larger portion of the modeling task under the
same time constraint, however, results in Table 1 did not show sig-
nificantly higher sketch or feature usage in either participant group.
Experts did spend significantly less time in creating sketches. As
this is an indication of more efficient sketch creation by the
experts, it could further indicate more skillful design of sketch
geometries for subsequent CAD features, highlighting forward
planning when building a model.

Further, the experts also had significantly less occurrences of
cancel operations and undo/redo actions. This is potentially a sign
of more careful strategic planning before initiating an action. Con-
sequently, although not statistically significant, this led to relatively
less time wasted on canceled operations during the modeling
process for the expert group. Similarly, the experts also spent rela-
tively (not statistically significant) less time on editing the existing
sketches and features.

Meanwhile, it was also noted that the experts spent significantly
less time reading the manufacturing drawings, but with a very
similar number of openings of the drawings when compared to

the proficient group. This suggested that the experts were able to
dissect the given problem and retrieve the needed information
more efficiently during a similar number of referrals to drawings
when rebuilding a model in CAD.

A comparison of the relative amount of time participants spent
creating new features to the amount of time spent on revising exist-
ing features is visualized in Fig. 6. Comparing the difference in
creation/revision time ratio between the expert and proficient partic-
ipants, no significant difference was observed (#(17)=1.38, p=
0.184). Next, we tried to correlate the creation/revision ratios to
the two performance evaluation metrics that we defined for this
experiment. It was first found that little correlation existed
between the ratio and the completeness of a participant (R*=
0.018, F(1, 17) =0.31, p=0.586). However, a simple linear regres-
sion showed a significant correlation between participants’ creation/
revision ratios and their correctness in the modeling task. The fitted
regression model suggests that

Correctness = 0.0061 - Creation/Revision Time Ratio + 0.87

The overall regression was statistically significant (R*=0.225,
F(1, 17)=4.94, p=0.040), and the creation/revision ratio signifi-
cantly predicted correctness (f=0.003, p =0.040). While a higher
creation/revision time ratio indicates fewer revisions of previously
committed CAD features during the modeling process, it also
implies that participants who required relatively fewer revisions
were able to finish the modeling task with higher dimensional

Table 2 Categorized actions in operation types (observable emissions in an HMM)

Emission # Operation types Categorized actions

1 Refer to drawing Open one of the provided manufacturing drawings

2 Start creation Begin the creation of a new CAD feature or sketch

3 End creation Commit the creation of a new CAD feature or sketch
4 Start edit Begin editing an existing CAD feature or sketch

5 End edit Commit the edits to an existing CAD feature or sketch
6 Delete Delete a CAD feature or sketch

7 Organize Move a feature; rename a feature; create a folder
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accuracy. Meanwhile, spending a greater proportion of time on revi-
sions during the modeling task does not generally result in higher
accuracy of the final CAD model.

4.3 Transitions of Actions. To further explore the difference
in modeling behaviors between the expert and proficient participants
during the modeling task, we analyzed the transitions between con-
secutive actions using an HMM. As described in Sec. 3.5, we first
categorized all the collected action types from participants’ audit
trail into a few operation categories, as shown in Table 2. Hence,
each operation type corresponds to one observable emission type
from the HMM. Specifying a discrete number of hidden states for
an HMM, the model can be trained on the sequence of emissions
derived from each participant’s audit trail. While the maximum
number of hidden states used should not exceed the number of emis-
sion types that the model is trained with [55], HMMs with a number
of hidden states ranging from 1 to 7 were first trained with 10
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Fig.8 (a) Transition and (b) emission probability matrices of an HMM modeling, the modeling process of the expert participants
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iterations each. To determine the optimal number of hidden states
to be used for the HMM for analysis, the Bayesian information cri-
terion (BIC) of each model was computed, as shown in Fig. 7(a). As
we aimed to use a model that has the best predictability (i.e., high
log-likelihood as shown in Fig. 7(b)) without overfitting, we
chose to use the number of hidden states that yielded the lowest
BIC. Coincidentally, four hidden states were found to be optimal
for both the expert and proficient group of participants in this
experiment.

With the audit trail data of the expert and proficient participant
groups each trained with an HMM with four hidden states, the result-
ing matrices are shown in Figs. 8 and 9, respectively. Comparing the
two trained HMMs, differences in modeling behaviors can be
observed through the probabilities of transitions and emissions of
the hidden states. In the HMM for expert participants, start creating
and start editing a feature were both categorized into one hidden
state (i.e., state 1), and end creating and end editing a feature
were both categorized into another hidden state (i.e., state 4).

1.0
0 035 0 0
08
0 0 002 0419 06 2
£
(]
=]
<]
035 0 0 0 -04x
- 02
009 009 0 0 0
' ' ' ' ' . -OO
] Q = o=
§ § § & 3 ¢§
o o =
S S 5 2 8 S
= 2 17 w o
a L

Transactions of the ASME

€202 1990100 20 U0 Jasn Ateiqr ojuoio] 10O Ansieaun Ad Jpd-LOvLLOT L 9L PW/9BS8Y0L/I09EEI0Y L/SL | L 0L/10pAPd-ojoILE/uBISOpleoluByoaW/BI0 B WSE  UoKos||0o[eNBipawSE/:d)y o) PapEojUMOQ



0.06 0 0 o~ - 03

Last State
State

0.13

4
.
o
=
(o]

Refer to Drawing -

1.0
0 041 0 0 0.01 0
08
0 0 0 0 001 06 2
3
©
fe]
<]
0 0 0 078 [N 0.1 - 04
-02
0 001 OIS 0 001 013
' ' 0 (] ] ' — 00
[} [ = =
§ § ¥ & 8§ &
o S - 2 & S
5 2 Z - <
a w

Fig. 9 (a) Transition and (b) emission probability matrices of an HMM modeling, the modeling process of the proficient

participants

Meanwhile, the feature creation to editing occurrence ratio for
expert participants was about 68% to 32%. On the other hand,
“start create,” “start edit,” “end create,” and “end edit” were
each observed through one hidden state for the proficient partici-
pants. This difference in clustering of actions likely indicates
that experts’ feature creation and editing were likely performed
similarly, where a more significant difference was observed for
the proficient participants.

During the modeling process, all participants were requested to
use only one screen to ensure consistency across participants.
Thus, participants had to switch to the provided manufacturing
drawings when referring to specific geometric dimensions.
However, such behaviors were categorized differently into the
four hidden states in an HMM between the expert and the proficient
group. For the experts, state 2 and state 4 seemed to differentiate
two types of referrals to drawings. Referrals observed through
state 4 mainly occurred during a feature creation or edit (transi-
tioned from hidden state 3 to state 4) with a 21% chance of occur-
rence after starting to create or edit a feature, which likely involved
quick checks of specific dimensions during the construction of a
CAD feature. Drawing referrals observed through state 2,
however, mainly occurred after the creation or edit of a feature
was completed (transitioned from hidden state 1 to state 2) with a
40% chance of occurrence after the creation or edit of a feature is
completed, where the participants were more likely to plan out
the next CAD feature to be implemented for the design. Further,
the drawing referrals that likely involved design planning (i.e.,
state 2) also included 19% occurrences of organizing actions,
where the participants likely cleaned up what they just finished cre-
ating or editing. For the proficient participants, on the other hand,
“refer to drawings” were largely observed in nearly all four
hidden states. This signifies that the proficient participants
brought up the drawings in a less organized manner during the mod-
eling process.

5 Discussion

5.1 Summary of Research Findings. In this paper, we
present the findings from an experiment where professional CAD
experts from the industry and young engineers with a proficient
level of CAD experience were tasked with the same CAD modeling

Journal of Mechanical Design

problem. We analyzed their individual modeling processes and
compared the difference between the two groups of participants.
After first evaluating the CAD models produced by the participants,
it was confirmed that self-evaluated experts were able to complete a
greater portion of the modeling task with higher dimensional accu-
racy under the same time constraint.

In general, experts in the experiment were observed to sketch
more efficiently than proficient users. When modeling in CAD,
the construction of sketches, especially the first few sketches, can
largely influence the overall efficiency of the entire modeling
process, because the creation of subsequent CAD features typically
needs to reference geometries created by previous sketches. We
might conclude therefore that while being proficient in modeling
in CAD likely signifies a near-expert level of declarative knowledge
in the use of specific features in CAD, the creation, and inferably the
planning, of fundamental sketches is an element of procedural
knowledge that requires more gradual development through one’s
career.

Meanwhile, models with higher dimensional accuracy were also
recorded with relatively less time spent on the revision of existing
features during the modeling process. Although the context of
this study is solely constrained within the CAD platform, our find-
ings resonate with Cross’s conjecture that: “It may be that good
designers produce good early concepts that do not need to be
altered radically during further development; or that good designers
can modify their concepts rather fluently and easily as difficulties
are encountered during development, without recourse to explora-
tion of alternative concepts” [17]. The need for more revisions
may also be due to the lack of modeling strategies (i.e., the proce-
dural knowledge), where participants likely relied on “trial and
error” [21]. Rosso et al. also suggest that variability in the modeling
process also affects the editability of the model in progress [18].
While designers often need to modify the existing CAD model
during construction, superior modeling strategies continuously
maintain the model in an editable state, reducing editing time and
cost along the modeling process. The fact that experts had signifi-
cantly less occurrences of undoing, redoing, and canceling actions
in the modeling task is also indicative of a smoother modeling
process. In any case, the proportional time spent on design revision
over creation is one important component of the CAD modeling
procedural knowledge that could be used to measure CAD
expertise.
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From the HMM analysis, the main distinction between the
experts and the proficient CAD users was observed to be the
ways they refer to the provided manufacturing drawings when mod-
eling in CAD. While the trained HMM was able to clearly distin-
guish two types of referrals to drawing in the expert group, one
during and one after feature creation or editing, similar trends
could not be observed from the proficient group of participants.
Representatively, an expert CAD modeler is less likely to open
the drawing during a feature creation or editing process, where
they typically refer to the drawing when they need to plan for the
next steps. On the other hand, non-expert modelers tend to fre-
quently switch back and forth between the workspace and the draw-
ings. In fact, the experts spent significantly less time reading
drawings, when the time spent was standardized by individuals’
completeness in the modeling task. As summarized by Cross, suc-
cessful design behavior is based not on extensive problem analysis,
but on, among other things, a focused or directed approach to gath-
ering problem information [17]. In our modeling task, reading and
retrieving dimensions from the provided drawings may be represen-
tative of gathering information in a detailed design task, as may
occur when a CAD designer is constrained by detailed specifica-
tions, competitor benchmarking, fidelity to physical prototypes, or
requirements of interfacing parts. Thus, the more organized infor-
mation retrieval behaviors from the experts likely reflect another
important component of the CAD modeling procedural knowledge
that differentiates CAD experts from others.

5.2 From Proficient to Expert in Computer-Aided Design.
Based on our research findings, it can be concluded that the most
significant difference between being proficient in CAD and being
an expert in CAD centers around the mastery of procedural knowl-
edge of the individual:

e With more industry experience, the experts can dissect the
manufacturing drawings and gather geometric information in
a way that requires fewer referrals back and forth between
their CAD workspace and the drawings, thus spending less
non-design time.

e As they start modeling in CAD, experts’ superior procedural
knowledge allows them to construct sketches more efficiently;
these sketches play a crucial role in the creation of subsequent
features in the modeling process.

e CAD modelers with higher accuracy tend to spend proportion-
ally less time on feature revisions. This likely indicates more
experienced declarative knowledge and smarter modeling
strategies (elements of procedural knowledge), which eventu-
ally lead to a better-planned, and therefore efficient, modeling
process.

From being able to extract information from manufacturing
drawings to laying out the more efficient modeling approach
before starting the modeling process, these are all skills that take
time and practice to build, and they are not something that can
likely be thoroughly taught with crash-course style learning
within a short period of time. While improving one’s procedural
knowledge through trial-and-error experience can be time-
consuming, recent research suggests the potential benefits and
advantages of cognitive apprenticeship, where a master leads the
apprentices through a modeling process by clearly describing the
strategy that is being implemented [46]. It is important for engineer-
ing students and young engineers to understand not only the steps
that are being performed but also how all the steps are planned
for the entire modeling process. Meanwhile, this is not a habit
that is easy to develop and stick with, where even a professional
engineer would be tempted to use a well-structured plan opportunis-
tically during the design process [60]. On the other hand, as further
research better understands how experts design, there exists a prom-
ising potential for human-AlI collaboration in design. With assis-
tance from an Al agent, designers are expected to learn and work
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more efficiently in CAD by following the learned strategies from
expert designers [9].

5.3 Limitations and Future Work. Several limitations in this
study should be noted, where future work may be conducted. As we
categorized participants for all analyses based on their self-reported
experience with CAD, self-evaluations, in this case, cannot warrant
accuracy and consistency across individuals. While two people may
report an equal length of CAD experience, they likely used CAD
with different degrees of frequency, intensity, and variety in differ-
ent time periods. Further, it is common for people with lower com-
petence to overestimate their skills in self-assessments [61].
Although results presented in this study did show a distinction in
task performance between the two levels of experience, more reli-
able assessments of the participants can be conducted before the
study for future research (e.g., assess participants’ spatial abilities
with the Purdue Spatial Visualization Test: Visualization of Rota-
tions, as used in Refs. [30,62,63]). Further, future research will
also benefit from having a larger and more diverse group of partic-
ipants. As gender differences are traditionally observed in skills like
spatial abilities [64], our current study is gender-imbalanced with 17
men and only 2 women.

In this study, all the actions studied were first categorized into a
smaller number of groups before further analyses. This pre-
processing method of the data provided greater efficiency of analy-
sis and interpretability of the results. However, it can arguably over-
look some details of the modeling process. Future work could
further seek meaningful differences by studying user actions and
tendencies in greater detail. For instance, features used in CAD
can be further categorized into additive, subtractive, and refinement
features, helping to further pinpoint expert strategies. While we see
evidence that the experts better establish their CAD models with
initial sketches, we can dig deeper to understand if there are sys-
tematic characteristics that set these sketches apart. For example,
future work can examine the CAD model artifact (e.g., the geome-
tries of each sketch, the parameters for each feature, and the para-
metric dependencies of sketches and features). The inclusion of
richer data types can enable HMM analysis with more emission
types for us to study the modeling process more closely, and the
correlation between the parametric data and behavioral actions
may also yield interesting research findings. Meanwhile, a larger
dataset with more participants may also increase the log-likelihood
(i.e., the generality) of the trained HMM with potential applications
for building a recommender system to predict or recommend the
next feature to be used for the user, similar to the work shown in
Refs. [11,56,57].

Nowadays, our experimental task—re-modeling a 3D solid part
in CAD based on 2D drawings—has been a widely adopted
approach for nearly all commercially available CAD software to
test their users on mastery of their products, and users’ abilities in
CAD. However, there exist limitations to this format of testing. In
fact, real-world design problems are mostly ill-structured and ill-
defined. In that scenario, the most prominent difference between
experts and novices was found to be the strategy used to decompose
the problems [24]. Although an open-ended design component was
not included in our modeling task, a similar difference was also
observed in how participants with different experience levels
decomposed and referred to the dimensions of the given drawings
(i.e., the “problem” in this experiment) before and during the mod-
eling process. In future studies that span through the conceptual and
detailed design phases, it will be interesting to evaluate how much
advantage such effective problem decomposition strategies provide.

While we aimed to provide a consistent, comfortable, and non-
intrusive experimental setting which would match that typically
encountered in an industrial CAD setting, one notable difference
in our experiment is that we asked participants to use only one
screen during the modeling process (e.g., no ‘“‘dual-monitor”
setups). This was necessary in this experiment to control the consis-
tency across participants and to track the actions of referrals to
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drawings. This difference may inflate our perception of the impor-
tance of referral to drawings.

Finally, a designer in industry would typically be faced with a
CAD modeling task accompanied by information on the intended
use or manufacturing process of the product, which was not given
in the experiment, such that we could isolate CAD modeling and
not context or manufacturing knowledge. Future research is
needed to investigate how different design intents expressed in
drawings affect the modeling process.

6 Conclusions

In this paper, we closely examined the difference in the model-
ing process between expert and proficient CAD users when mod-
eling the same mechanical part in the same setting. Under an
identical time constraint, self-identified experts were able to com-
plete a greater portion of the modeling task with higher dimen-
sional accuracy. Detailed analysis of the modeling process
suggested a significant difference in modeling strategies between
the two groups of participants. Beyond mastering CAD features
in a specific design software, we found that (1) experts were
better at reading and dissecting manufacturing drawings when
modeling, and (2) experts were able to plan their CAD features
ahead and select a more efficient modeling strategy that required

Appendix A: Drawings Provided for the Modeling Task

less effort and revisions. While it takes time and practice for
young engineers to develop these skills to bridge the gap and
become design experts, the experimental study of this experience
gap delivers first-of-its-kind insight into CAD expertise and builds
on the understanding of expert modeling behaviors in general.
Eventually, this knowledge can be used to develop future smart
assistants and contribute to more effective curricula and training
in design.
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The manufacturing drawings that were used and provided to the participants for the four steps of the modeling task are presented in

Figs. 10-14.
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Fig. 10 Drawing provided for step 1 of the modeling task
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Appendix B: Drawings for Grading

A different version of the same drawings provided to the participants was used for the grading of participants’ completeness and cor-
rectness. These drawings contain the minimum number of dimensions and constraints that can fully define the parts. Drawings used for
the four steps of the modeling task are presented in Figs. 15-18.
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Fig. 15 Drawing used for grading step 1 of the modeling task
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Fig. 16 Drawing used for grading step 2 of the modeling task
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Fig. 17 Drawing used for grading step 3 of the modeling task
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Fig. 18 Drawing used for grading step 4 of the modeling task
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