

DIGITAL TRANSFORMS PHYSICAL

CAD Challenges App

An Informatics Framework for Parametric Modeling Practice and Research Data Collection in Computer-aided Design

Yuanzhe Deng ^{1,2} Dr. Matthew Mueller ¹ Dr. Matt Shields ¹

¹ PTC Education, PTC Inc., Boston, MA
 ² University of Toronto, Toronto, ON, Canada

AGENDA

- CAD Research Background
- Our Framework
- Preliminary Analysis
- Conclusions & Future Work

TEACHING DESIGN IN CAD

Declarative Knowledge	Procedural Knowledge
Mastery of individual parametric features and commands	Cognitive decision-makings and strategic design process planning
Dominant pedagogy in education and industry	Requires gradual development through practice and experience
Commonly tested through certification exams	Main empirical difference between expert and novice designers

Chester, I., 2008, "3D-CAD: Modern Technology--Outdated Pedagogy?," Des Technol Educ, **12**(1). Chester, I., 2007, "Teaching for CAD Expertise," Int J Technol Des Educ, **17**(1), pp. 23–35.

DESIGN RESEARCH IN CAD

Cognitive Design Thinking

RESEARCH QUESTIONS

Education Research

How can we facilitate and incentivize asynchronous practicing of CAD to help learners gain procedural knowledge?

Design Research

How can we easily collect large amounts of data about modeling strategies to better understand CAD best practices?

OUR FRAMEWORK

Research ↔ Education

BENEFITS OF THE FRAMEWORK

Education

- Asynchronous learning
- Competitive incentives for modelling practice
- Teach procedural (strategic) knowledge with careful question design

Research

- Unobtrusive data collection
- Big data research approach
- Flexibility in experimental design

PRELIMINARY ANALYSIS

Publicly Launched on March 6, 2023

Unique Users: 303

Total Question Attempts: 1055

* Data as of August 18, 2023

PRELIMINARY ANALYSIS

Question Name

12

^{*} Data as of August 18, 2023

HOW DID USERS MODEL?

CONCLUSIONS, LIMITATIONS, & FUTURE WORK

- Education-research connection
 - Education users generate big data for research
 - Research findings benefit education
- Extensibility of app framework

- Limitations
 - Anonymity vs. user background
 - Capture of other cognitive activities
- Future work
 - More challenges
 - Connection to real-world CAD design data
 - Build functionality to check for best practices

IDETC2023-114927 CAD Challenges App

THANK YOU

edutech@ptc.com

ptc.com

